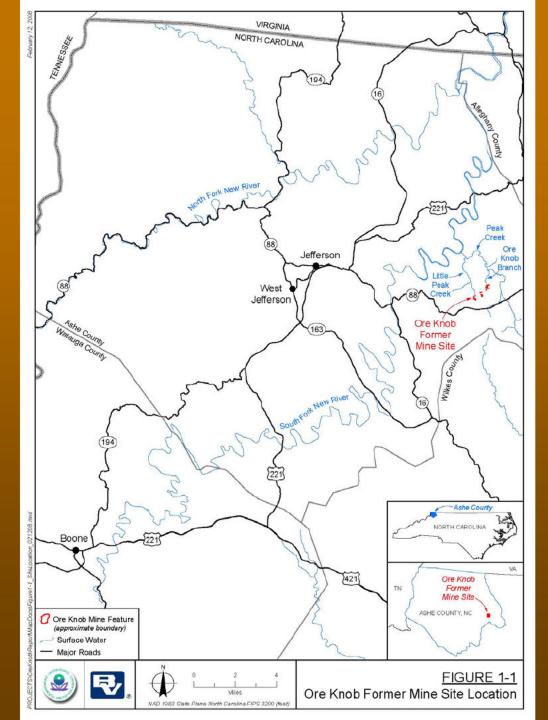
Ore Knob Mine, Ashe County, NC

National Risk-Based Priority Panel Briefing Loften Carr, RPM March 2015

Located in Laurel Springs, near Jefferson, Ashe County, North Carolina

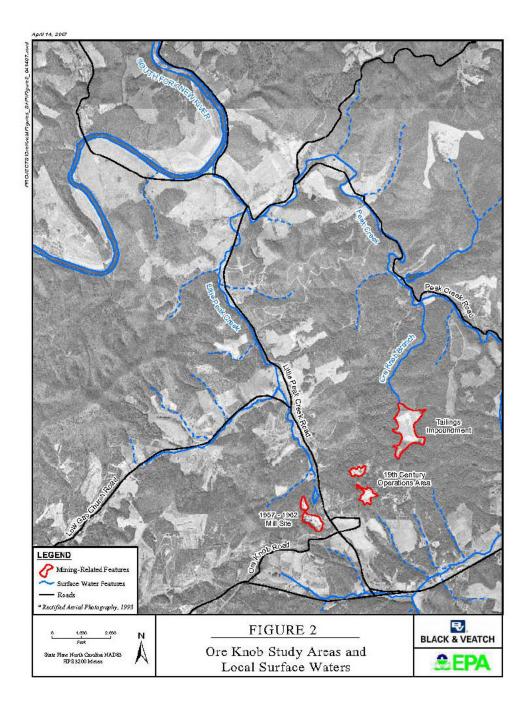

Ore Knob Mine Site History

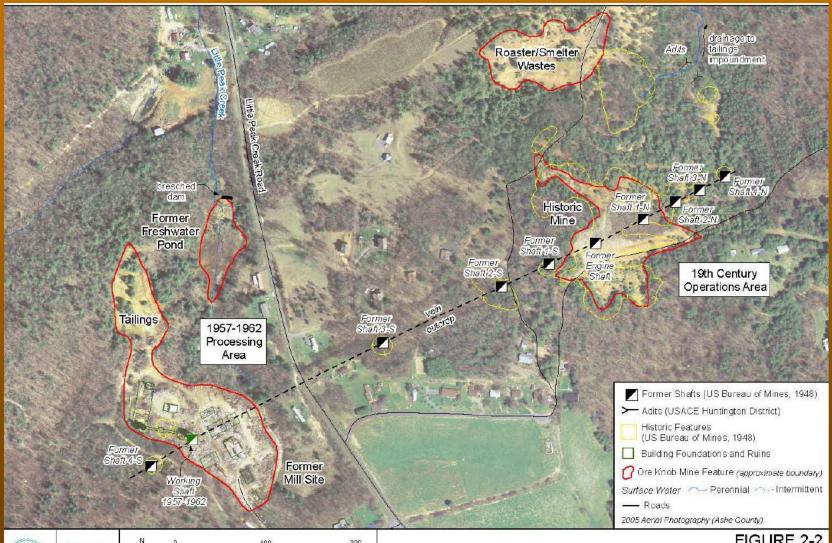
Former Copper Mine located in Ashe County, NC

Mine operated intermittently from 1855 until 1962

Largest Copper Producer in NC

Massive Sulfide Deposit produced:
31,000 tons of Copper
9,400 ounces of Gold
145,000 ounces of Silver
From 1,500,000 tons of Ore




3 Site Areas: 1957 – 1962 Mill Site 19th Century Operations Area Tailings Impoundment

4 Impacted Sub-Watersheds:

Ore Knob Branch
Peak Creek
Little Peak Creek
South Fork New River

Private Wells Impacted:
Underground Mine Works
Tailings Pond?

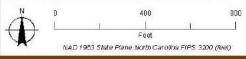


FIGURE 2-2

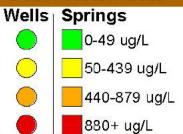
Historic Features in the 19th Century Operations and Former Mill Site Areas

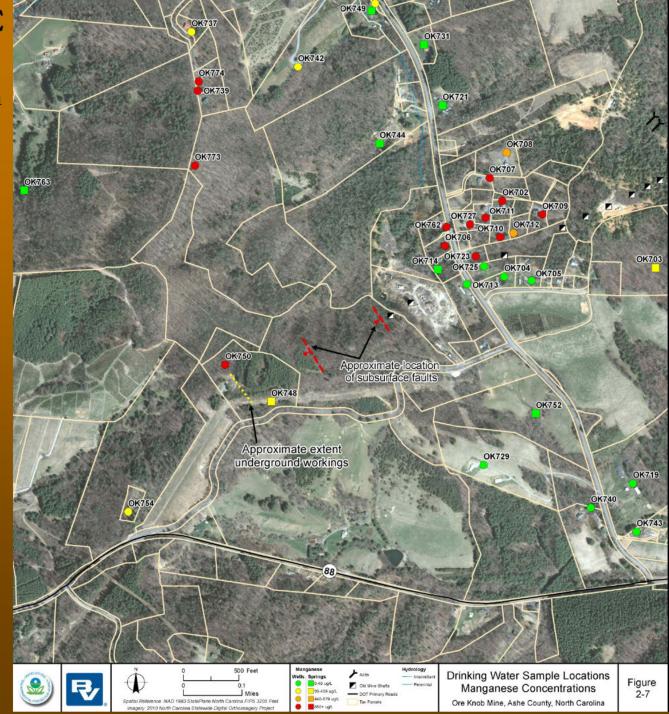
Tailings Impoundment (Before Removal Action)

Tailings Impoundment (Removal Action Complete)

Ore Knob, NC Site History

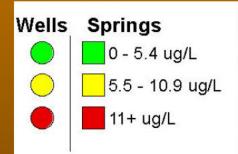
- 2007 EPA conducted a site wide ESI
 - Collected 7 Potable well samples
- 2008 2011 Time Critical Removal Action stabilized the Main Tailings Pond (\$6.2 Million)
- 2009 Site Final On NPL
- April 2010 Determined several potable wells exceeded health based benchmarks for Manganese and Cobalt
- April 2010 June 2012 –EPA SESD/SRSEB sampled 79 potable water sources (64 private wells and 15 Springs)
 - -EPA Emergency Response provided bottled water and installed or upgraded 10 whole house treatment systems.
- June 2013 EPA signed EECA Approval Memo
- February 2015 Completed Final EECA and approved NTCR Action Memo for Drinking Water

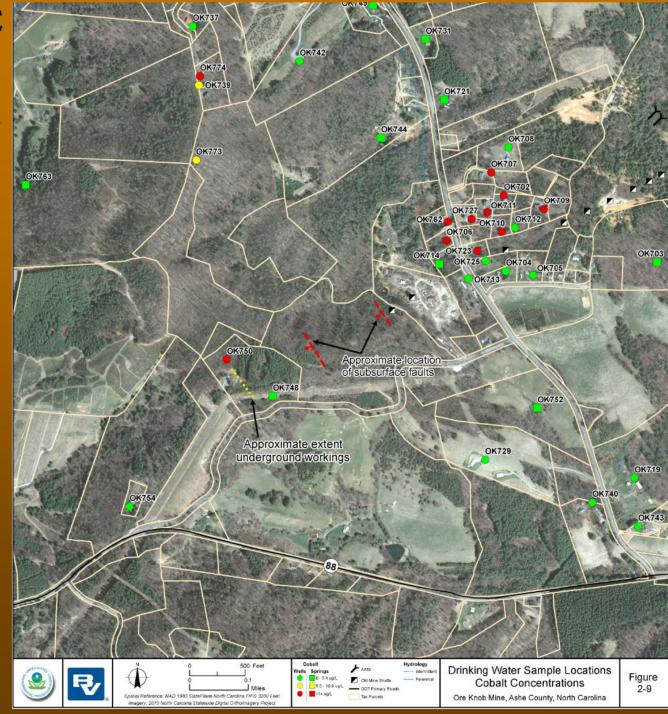

14 Contaminated Potable Wells, 1 Potable Well of Concern, 0 Contaminated Springs


Extent of Contamination

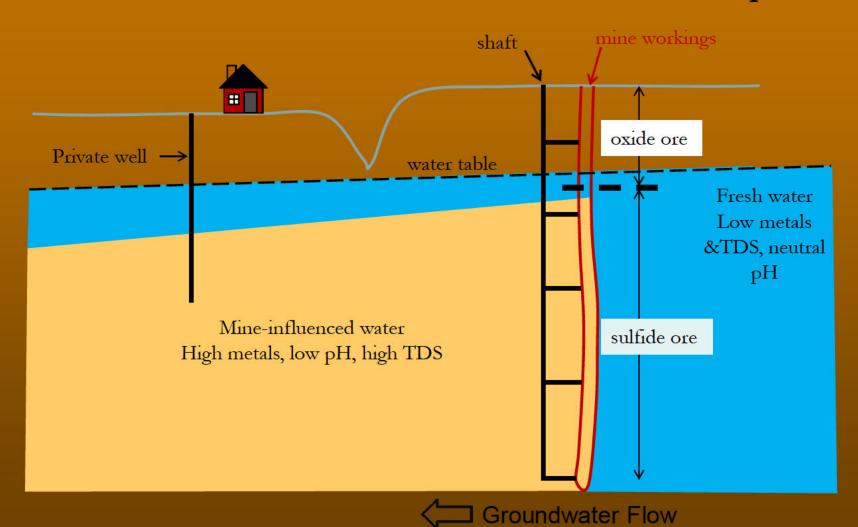
Manganese Exceedances

Concentration


50 ug/L is the secondary MCL for Mn



Extent of Contamination


Cobalt Exceedances

Concentration

Conceptual Hydrogeological Model of Underground Mine Pool and Local Fractured Rock Aquifer

RME Human Health Risk Assumptions

- Current and Future Resident exposure through
 - Ingestion
 - Inhalation and/or dermal exposure while showering
- 30 year exposure period @ 350 days per year
 - Child (1 to 6 yrs) 6 year exposure duration
 - Adult 24 year exposure duration
- Analytical results used for exposure point concentrations
- Both untreated and treated water evaluated where point of entry treatment is being used

RME Human Health Risk Results

COPCs detected in:

- 29 of 65 private wells
- 2 of 16 private springs
- At 15 private wells, total HI > 1 for adult and/or child
- Exposure to Co, Mn, Fe predominates risk; Cu presents minor risk
- Existing wellhead treatment systems reduce calculated total HI to acceptable levels when properly functioning
- Total cancer risk is below threshold for all lifetime residents

RME Human Health Risk Example of Some Results

Location	Who	Noncancer HI	COCs Contributing to Risk	
OK702	Child	83	Mn > Co	
OK/02	Adult	36	Will > Co	
OK706	Child	50	$M_n > C_0 > F_e$	
OK/00	Adult	21		
OK707	Child	10	Co > Mn	
OK/0/	Adult	5	Co > Mii	
OK708	Child	3	Mn = Fe	
OK/06	Adult	1		
OK709	Child	43	Co > Mn > Cu	
OK/09	Adult	19		

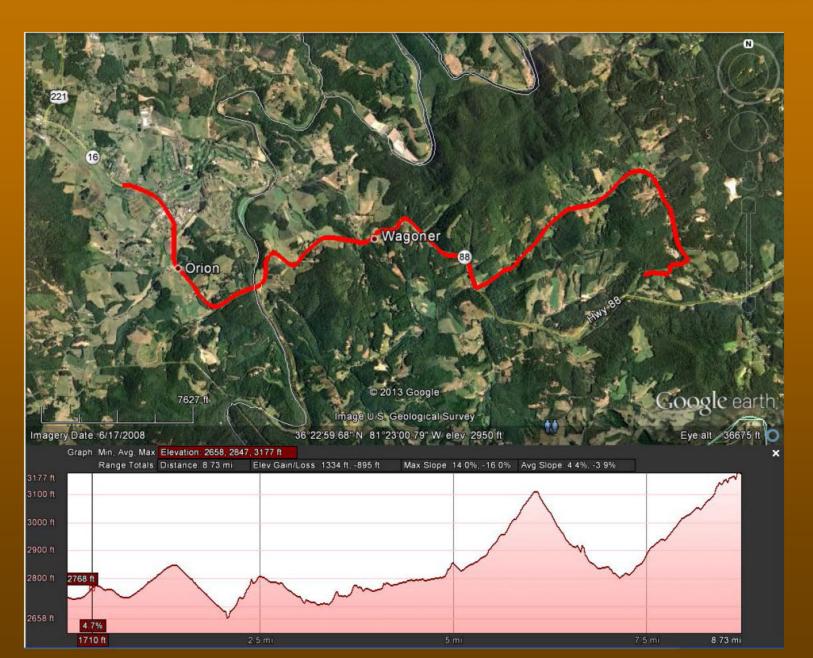
Removal Action Goals

Contaminant of Concern	Range of Measured Concentrations in Untreated Ground Water	Basis for Removal Action Goal	Removal Action Goal	
Cobalt	0.1U - 160 μg/L	Risk based HQ=1	11 μg/L	
Copper	0.87 - 3,800 μg/L	MCL	1,300 μg/L 26,000 μg/L 880 μg/L	
Iron	35.1 - 42,000 μg/L	Risk based HQ=1		
Manganese	1U - 18,200J μg/L	Risk based HQ=1		

EValuate Alternative Potable Water Supply

EE/CA Alternatives:

- 1. No Action
- 2. Point-of-Entry Treatment System
- 3. Community Water Supply System
- 4. Waterline Extension from Jefferson, NC



Preferred Alternative – Municipal Water Supply

 This alternative would extend the City of Jefferson municipal water supply ~ 8 miles to the 15 homes where private water supplies exceed the RGs for at least one COC.

Alternative 4 – Potential Water Line Route

Alternative 4 – Municipal Water Supply

Evaluation

- Highest Capital Cost up front, Most permanent option of alternatives
- Lowest Annual O & M and Long Term Cost
- City of Jefferson, NC assumes responsibility for O&M
- Very Protective of HH Contaminated water NOT used as the supply source;
 completely eliminates HH threat of mine influenced water
- Low cost to users (est \$65/ month, + per gallon rate)

Table 6-2. Summary of Capital, Operations & Maintenance, and Present Worth Costs for Drinking Water Alternatives at the Ore Knob Mine Site

Alternative		Capital Cost	Average Total Annual O&M Cost	Monthly O&M Cost/Home ¹	Present Worth Cost (7% Discount Rate)	
1	No Action	\$0	\$0	\$0	\$0	
2A	Point-of-Entry Treatment	\$43,200	\$85,640	\$476	\$1,096,000	
2B	Point-of-Entry Treatment with Bottled Water	\$45,500	\$186,200	\$1,034	\$2,346,000	
20	Point-of-Entry Treatment with Reverse Osmosis	\$64,800	\$153,200	\$851	\$1,951,000	
3A	Community Water for 15 Homes	\$4,673,200	\$23,600	\$131	\$4,966,000	
3B	Community Water for 30 Homes	\$5,194,000	\$43,200	\$120	\$5,730,000	
4	Public Water - Moderate Estimate	\$10,187,000	\$11,749	\$65	\$10,333,000	
4	Public Water - Conservative Estimate	\$13,994,400	\$11,749	\$65	\$14,140,000	
¹ 15 homes for all alternatives except 3B = 30 homes						

Action Memorandum for NTCRA Alternative 4 – Municipal Water Supply

- <u>Community Acceptance</u> Community prefers Alternative 4 Municipal Water Supply because it is permanent and effective long-term solution for residents with contaminated water
- <u>Past and Future Expenditures</u> EPA spent \$6.2 Million on Tailings Pond TCR;
 <u>Exemption 5 DP</u>
- Ground Water This decision significantly impacts future groundwater remedial decisions

QUESTIONS?

DISCUSSION?

